

March 2020

This newsletter covers best practices in message templating, the new Symphony Bot Developer Kit

(BDK), the next editions of the Innovate Hackathon series, the Symphony Developer Certification, and

more.

Develop: Message Templating

Have you written a simple bot that got increasingly complex over time? If so, you might have

encountered challenges with constructing message content and maintaining its code. You can

construct MessageML in string variables that’s embedded within business logic. However, this

quickly becomes unsustainable as the project grows. As a best practice, Symphony

recommends using message templating to ensure message structures are more easily

maintained in the future. This applies for smaller projects as well.

The core benefit of templating is to isolate static message content from business logic.

Templating also allows for some useful flow control syntax, such as loops, to facilitate data-

driven content. This reduces the amount of boilerplate and string duplication within your code.

There are a number of templating engines that range in popularity, depending on your

preferred language or framework. We will discuss two examples in the context of building

Symphony bots in Java: Apache FreeMarker and Handlebars.

Apache FreeMarker is built into Symphony, so it doesn’t require engine-specific dependencies.

You can use sendMessage() in the SDKs or the corresponding create message REST API call to

send FreeMarker syntax directly in the message field with the string representation of your

object in the data field.

https://freemarker.apache.org/
https://handlebarsjs.com/guide/

March 2020

FreeMarker template saved in resources/template.ftl

<div>
 Status: ${data.status} of ${data.items?size} items
 <#list data.items as item>
 <div>Item ${item?index+1}: ${item.name} x ${item.quantity}</div>
 </#list>
</div>

JSON representation of data object

{
 "status": "Pending Delivery",
 "items": [
 { "name": "Maki", "quantity": 150 },
 { "name": "Sake", "quantity": 200 },
]
}

Java Code for loading a FreeMarker template and sending it in a message

// Load template
Path path = Paths.get(getClass().getResource("/template.ftl").toURI());
String template = String.join("\n", Files.readAllLines(path));

// Build data object and stringify using jackson-core
List<OrderItems> items = Arrays.asList(
 new OrderItem("Maki", 150),
 new OrderItem("Sake", 200)
);
Order order = new Order("Pending Delivery", items);
String data = (new ObjectMapper()).writeValueAsString(order);

// Send message
OutboundMessage outboundMessage = new OutboundMessage(template, data);
botClient.getMessagesClient().sendMessage(streamId, outboundMessage);

March 2020

The MessageML string is reduced significantly as the number of data objects grow, owing to

the <#list/> construct. There are also other constructs like if/else or ?size that enables the

template to dynamically adjust to the data content without any string manipulation.

Unlike FreeMarker, Handlebars is independent of Symphony, so it requires an additional

dependency in your project. It also requires an extra compilation step to build the actual

MessageML string which will be used in sendMessage() without the data field.

Java Code for compiling a Handlebars template and sending it in a message

// Compile message
Handlebars handlebars = new Handlebars();
String message = handlebars.compileInline(template).apply(order);

// Send message
OutboundMessage outboundMessage = new OutboundMessage(message);
botClient.getMessagesClient().sendMessage(streamId, outboundMessage);

Handlebars also differs in that it is based on a principle of logicless templates. This means

that less flow control syntax is available, but it allows you to define custom helpers in your

code. For example, if you’d like to add 1 to the 0-based @index in your template, you can define

a plusOne helper as follows:

Handlebars template

{{#each items}}
 Item number {{plusOne @index}} is {{name}}
{{/each}}

March 2020

Java Code for helper registration

handlebars.registerHelper("plusOne", (value, options) -> value + 1);

Each engine has its strengths, so choose one that fits your needs. You can find a more

detailed and complete guide on templating in Java at our developer documentation site. The

page also includes a complete sample project for you to try out.

Symphony Bot Developer Kit (BDK)

Symphony is pleased to provide our developer community a sneak preview of the soon-to-be-

released Bot Developer Kit (BDK).

Some developers in our community are familiar with the Symphony Generator, which provides

sample code, a project scaffold and a customized config.json file. The Symphony BDK goes

further by providing developers with a collection of tools to help quickly build and deploy

production-ready bots and applications.

As Symphony develops and deploys fully interactive integrations, our development team will

continue to compile best practices and tools into the BDK. The underlying Bot SDK is heavily

Java/Spring-based, while the UI ToolKit is React-based.

The Bot Developer Kit contains the following tools:

● CLI - to easily create new projects, and quickly add commands or message templates

to an existing bot project

https://developers.symphony.com/symphony-developer/docs/using-templating-engines-java

March 2020

● Bot SDK - including the following features to:

○ handle bot commands

○ connect with external systems (includes handling authentication)

○ send templated messages

○ create advanced command matching patterns

○ create and manage webhooks for notifications from external systems

○ deploy Extension Applications (app.js, controller.js, and configurations),

○ enforce rate limiting

○ and many more

● UI ToolKit - a library of visual components (with the sample code for each

component!) enabling rich, interactive and consistent Extension Applications

The Bot SDK includes a CommandHandler class that allows developers to easily define

matching patterns for bot commands and bot response behavior. This allows you to focus on

building out business logic, instead of writing parsers for incoming Symphony messages and

constructing responses, thus speeding up the bot development process.

The CommandHandler has three subclasses (for now):

● DefaultCommandHandler to provide default friendly responses

● AuthenticatedCommandHandler to manage interactions with external, authenticated

systems

● MultiResponseCommandHandler to allow bots to respond to commands posted in

one room and broadcast them to multiple rooms

March 2020

Register: Symphony Innovate Europe Hackathon 2020 in Paris

Build on our secure collaboration platform to extend critical workflows beyond your company

walls. Develop scalable, innovative solutions at an upcoming Symphony Hackathon to bring

efficiency to your firm. Such solutions should break down silos across firms or internally

across front, middle, and back offices. Gather your team of 1-5 individuals and register for the

Paris Hackathon at BPIfrance on July 1, 2020.

Coding will begin at 9am and end at 5pm, followed by presentations, an awards ceremony, and

cocktail hour.

Winning teams and their solutions will be featured at Symphony Innovate New York on 7-8

October.

For more information or to view previous Hackathon Award winners, please visit our Innovate

Hackathon website.

Announcing the Symphony Developer Certification

Are you ready to start your Symphony Developer Certification Journey? In April 2020, we will

introduce the Symphony Developer Certification program, along with a suite of educational

course content.

Follow the course materials to accelerate your learning experience while progressing

through the course levels:

https://www.eventbrite.com/e/symphony-innovate-2020-hackathon-paris-tickets-89598574749
https://innovate.symphony.com/2020-emea-hackathons/
https://innovate.symphony.com/2020-emea-hackathons/

March 2020

● Beginner: Symphony Development Fundamentals

● Intermediate: Developing Bots and Apps with Symphony

● Advanced: Symphony Advanced Development

Look out for further announcements on this exciting new material coming out in April 2020!

Developer Events

Make sure to join one of our Symphony Developer Meetup Groups to receive updates on upcoming

developer events near you!

Share with a Colleague

Know a colleague that will find the developer newsletter useful? Help them subscribe to the

newsletter now.

The Developer Documentation found on developers.symphony.com and the instructions provided in this Symphony Developer Newsletter (collectively,
the "Symphony Materials") are each provided "as is" without warranty of any kind (including without limitation, any warranty of merchantability or
fitness for a particular purpose or non-infringement), and as such shall not be considered a "Symphony Service," as such term is used and defined in
the services agreement between your firm and Symphony Communication Services, LLC ("Symphony"). This means, among other things, that (I)
Symphony makes no representations or warranties, express or implied, with respect to any matter relating to the Symphony Materials; (II) Symphony is
under no obligation to provide support or maintenance for the Symphony Materials; and (III) Symphony disclaims all liability for or with respect to your
or your firm's access to or use of the Symphony Materials, and under no circumstances and under no legal theory, whether in tort, contract, or
otherwise, will Symphony be liable to you or your firm (i) for any indirect, special, incidental, or consequential damages, (ii) for punitive damages, (iii) for
damages for lost profits, lost sales, or business interruption of any character, in each case even if you have been advised, knew or should have known
of the possibility of such damages. The Symphony Materials are subject to change without notice and are for information and illustrative purposes
only. None of the Symphony Materials is, and should not be regarded as “investment advice” or as a “recommendation” regarding a course of action,
including without limitation as those terms are used in any applicable law or regulation. The Symphony Materials are provided with the understanding
that with respect to the Symphony Materials you will make your own independent decision with respect to any course of action in connection herewith,
as to whether such course of action is appropriate or proper based on your own judgment and your specific circumstances and objectives.

https://www.meetup.com/pro/symphony-developer-group/
https://go.symphony.com/developer-newsletter-archive
https://go.symphony.com/developer-newsletter-archive

